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-" ABSTRACT

Given two Banach spaces X and Y over K- R or C and a parametrized family

A(j) E X(X, Y) with p E K, partial and algebraic multiplicities of any value

S0 E K such that A(p 0 ) if Fredholm with index zero are defined by the means of

generalized Jordan chains. These notions are developed in close connection

with bifurcation problems and we show that partial and algebraic multiplici-

ties are not affected by Lyapunov-Schmidt reduction. Properties of invariance

under equivalence are also established. These general results are used to

give a proof of Magnus' generalization of the classical bifurcation theorem by

Krasnoselskii through a somewhat more natural approach than his. But the con-
b .1

Avincing evidence of the usefulness of the notions developed here has to be

found in a new and wide extension of the Bbqhme-Marino-Rabinowitz theorem on

bifurcation for gradient operators, the ancestor of which is also due to

-. Krasnoselskii.
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1. INTRODUCTION

In 1976, Magnus [13] introduced a generalized notion of algebraic multi-

plicity for values p0 of the scalar parameter p at which a given parametrized

• . family A() of linear operators acting between Banach spaces becomes singular.

He used this concept to prove various local and global bifurcation theorems

generalizing the well known result by Krasnoselskii [11] about bifurcation at

a characteristic value with odd algebraic multiplicity.

Magnus' definition of algebraic multiplicity requires using a sequence of

.[ projections, as is briefly reviewed later on in this section. Here, we shall

also develop a generalized notion of algebraic multiplicity which will eventu-

ally be shown to coincide with Magnus' one, but our approach is rather dif-

ferent. Instead of a sequence of projections, our definition involves gen-

eralized Jordan chains. We have found many advantages in doing so. First, it

is our feeling that the resulting definition is both simpler and more intui-

tive. More important is the fact that generalized Jordan chains permit the

use of the so called root functions which often allow one to replace tedious

combinatoric or other arguments by an elementary proof. Most significant of

this property is our proof that Lyapunov-Schmidt reduction does not affect the

algebraic multiplicity. This was not established by Magnus and, indeed,

seems difficult to prove in his approach. Using this result, it becomes pos-

N.- sible to parallel one of the classical proofs of Krasnoselskii's theorem to

obtain Magnus' generalization of it in a somewhat more natural way than his.

But the decisive argument in favor of generalized Jordan chains is that

algebraic multiplicity is derived from the more refined notion of partial mul-

tiplicities. It is to be noted that Magnus, too, introduces partial multipli-

cities which, however, differ from ours. Incidentally, he makes no use of

2 iI
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them except as a sometimes convenient terminology. In sharp contrast, the

''.9 partial multiplicities considered here play a crucial role to establish gen-

eralizations of the theorem-by Krasnoselskii [11] on bifurcation for gradient

V operators, subsequently improved by Bbhme [2], Marino [14] and Rabinowitz

[17] . Our contribution differs in that the versions we give are not limited

to nonlinear eigenvalue problems and deal with general equations of the form

F(,u, x) - 0, far beyond the currently available results. Aside partial multi-

plicities, the related proofs involve analytic perturbation theory for linear

operators and a preliminary bifurcation theorem in the finite dimensional case

based on Conley index and showing that, for gradient operators, bifurcation is

guaranteed by a change of Morse index of the linearization.

Other by-products of our analysis are a third definition for the alge-

braic multiplicity, a fourth one being that of Ize [9], known to be identical

with the definition by Magnus. Invariance of partial and algebraic multipli-

cities under equivalence is also established and used to formulate correspond-

ing bifurcation theorems when bifurcation is studied from a known branch of

solutions instead of the trivial branch.

Orapproach tomultiplicities through generalized Jodnchains closely

follows Gohberg, Lancaster and Rodman [7] who consider the finite dimensional

* and polynomial case. Because neither of these assumptions is typical in

applications to bifurcation problems, variants of the proof presented in [7]

need to be given, especially those involving determinants. Despite that the

infinite dimensional framework has reportedly been investigated in the complex

and analytic case by the Russian school (also responsible for the introduction

of generalized Jordan chains in the mid forties) we have not found available

references for the real and nonanalytic case.

I0. , e
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We will be considering a parametrized family A(y) e X(X, Y) with X and Y

Banach spaces over K - R or C and A varying in some open and connected neigh-

borhood of 0 in K. However, in our exposition, we shall limit ourselves to

K - R since all the definitions and results that make sense can be extended to

K - C without modification (except for shorter proofs at times). Also, the

parametrized family A(y) will always be "smooth", which means "of classteo.

Whenever a result is proved for smooth families, it can be generalized to fam-

ilies with only some finite regularity, but the smoothness assumption is con-

venient for expository purposes.

Before we introduce generalized Jordan chains, let us briefly recall how

(algebraic) multiplicity is defined by Magnus in [13]. Suppose that A(0) is

Fredholm with index zero. If A(O) E Isom(X, Y), the algebraic multiplicity of

A - 0 in A(A) is defined to be 0. Otherwise, set A(0)(A) - A(p) and, given an

* arbitrary projection ir0 with range the null-space Ker A(0), set, for A o 0

A( 1)() A() + A(0 )()(I -

and, for p - 0

A( 1 )(0) - A' (0)(O)w 0 + A(0)(Q)(I -

If A( 1 )(0) e Isom(X, Y), the multiplicity of A - 0 in A(p) is defined to be

dim Ker A(0). As A( 1 )(0) is Fredholm with index zero in any case, and if

A(1 )(0) e Isom(X, Y), one may define a new family A( 2 )(A) by repeating the

same procedure (note that A( 1 )(/) is smooth). In other words, choosing a pro-

jection ri with range the null-space Ker A(1 )(), set, for 0

A A)- A (A)rI + A (A)(I -(2) 1 (( ) ) 0)

and, for -0

4
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If A((0) E Isom(X, Y), the multiplicity of p - 0 in A(p) is defined to be
(2) th mip..,,j

dim Ker A (1)(0) + dim Ker A(O). Otherwise, A(2 )(0) is Fredholm with index

zero and A( 2 )(p) is smooth, so that a new family A( 3 )(M) is defined. Assuming

that this process stops at rank K (i.e. A((0) E Isom (X, Y)), the multipli-

city of p - 0 in A(p) is defined by

rC-'

Z dim Ker A (0)j-0 A(i

Multiplicity of p0 in A(s) is defined to be the multiplicity of p - 0 in

A(M + a0) .

4NS

As mentioned before, our approach will be different. But, in any case,

let us make it clear right now that there is an actual need for a definition

of algebraic multiplicity. In particular, it cannot be overemphasized that

the generalized null space of A(O) has nothing to do with the algebraic multi-

plicity of u - 0 in A(js), except when A(ji) - A0 - jsI. This is because alge-

braic multiplicity must relate to the whole family A(p) and not merely to the

operator A(O). If X - Y - Rm , the order of the root p - 0 in det A(p) pro-

vides a useful definition (totally unrelated to the generalized null-space of

A(0)) and the problem becomes one of suitably generalizing this notion when X

and Y are arbitrary Banach spaces.

%p
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" 2. GENERALIZED JORDAN CHAINS; ROOT FUNCTIONS

Let then X and Y be real Banach spaces and A(A) a smooth mapping of the

real parameter M with values in the space X(X, Y). The function A(P) need

only be defined for M on a neighborhood of the origin. For j > 0, we shall

set

A A. - (1/j!)A'  (0) (2.1)

J

A family (e0. . . . ,e 2 ) of 1+ 1 vectors of X such that e0  0 and

Ai e. .- 0 , 0 < j : 1, (2.2)
i-O 1

will be called a generalized Jordan chain of A(p). For j - 0, note that

A0 - A(0). From (2.2), one has A0e 0 - 0: as e0 o 0, existence of generalized

Jordan chains requires Ker A0 o (0). It is readily seen from the definition

that e 2 exists if and only if

Aie I E1 Range A0
.'-' i-i

- From this observation, a natural definition for a maximal chain follows as

being one that cannot be continued. In this paper, we shall exclusively be

concerned with the case when Ker A0 is finite dimensional and when no general-

ized Jordan chain can be continued indefinitely. Actually, the stronger

assumption that the length of all maximal chains is uniformly bounded from

above by a positive integer will be made. But in the case of interest when

A 0 - A(0) is Fredholm with index zero, we shall later see that the two

requirements are the same. Of course, the length of a chain must be under-

stood as the number of its elements.

In the hypothesis that the length of all maximal chains is uniformly

bounded from above, we can define "canonical sets" of generalized Jordan

V %,
p.-
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chains according to the following process: given e0 o 0 in Ker A0, call x(e0)

the maximal length of all the generalized Jordan chains originating at e0.

Such an integer K(e0 ) is defined without ambiguity and K(e0) is uniformly

bounded as e0 runs over Ker A - (0). As K(e0 ) takes integral values, it fol-0i 0
lows that an element e Ker 0 - (01 exists for which x(e 0 1) - K I is max-

imal. We thus obtain a generalized Jordan chain

(e0 ,i. . . . .. .e 1l
)

with maximal length among all possible generalized Jordan chains. In a second

step, we select e 2 by requiring that x(e0.1) _K2 be maximal among all values

(e 0) for e0 E Ker A0 not collinear with e0 l. This yields a generalized Jor-

dan chain

.0,2 ....... -1,2)
2'

Of course, K 2< " follows from the definitions. More generally, having

chosen j generalized Jordan chains originating at e0 , ... , e0 j respec-
tively, we select e, by requiring that x(ej) r .l be maximal among all

0,ey eseeteOj+l j+l j+l

values x(e0) for e0 E Ker A not in the span of {e0 ,1, ... ,e0,j. Hence,

there is a generalized Jordan chain

.e,(e0 ,j+l .... .j+l-l,j+l

with j. <- r" Clearly, if Ker A0 is finite-dimensioril the process can be

repeated until n - dim Ker A0  elements e0 1, ... ,e0  have been selected.

The set of generalized Jordan chains

( j.. . _(... .. ... e. , ) < j < n)

- with .I > P2 > ... > xc > 1 is called a canonical set of generalized Jordan1.'[ - 2- - n - -.,_

chains.

j
*r 1e

- AJ%
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Remarks: 1) If X - Y and A(A) - AI - L, L e '(X), a generalized r...:

of A(y) is nothing but a Jordan chain of L corresponding to

~p - 0. 2) Unlike Jordan chains, generalized ones need not be made

independent elements. 3) Our definitions (in particular that or i

set) duplicate those in [7] when X - Y = Rm and A(p) is a

Canonical sets of generalized Jordan chains are not uniquely

ever, we shall see below that the integers nI, " " are independ:. "
..

- canonical set. E0

" From the definitions, it is clear that x1 is the same for ever., can-:

set of generalized Jordan chains. Set

K1 a (e0 ( Ker A0 - (0) , P(e0) - K 1

and let E denote the subspace of Ker A0 generated by K I , namely the smain.-

subspace of Ker A0 containing K1 * It follows that dim E equals the maxi.:.

number of linearly independent elements in K Denote by 2 the dimension o-

.1 Let e0,1, ... e0 ,n be the first elements of a canonical seL of general-

ized Jordan chains. From the definition, it is immediate that e, ...

are linearly independent elements of KI , so that x PC I and

E1 span (e0 , . . .. . e0.}.

The set K1 and hence both the space E1 and its dimension £ are independent of

any particular choice for a canonical set of generalized Jordan chains, and

the above thus shows that Ki .. . . . .K are also independent of the canonical

set. Independence is then proved if 2 - n. If 2 < n, K2+1 is (from (2.31) and

.-. the definition) the maximum of t(e0 ) as e0  runs over (Ker A0 ) - E Then,

just as r 1 K2+1 is independent of the canonical set. Consider

2 - (e0 E Ker A0 - (01 , K(e) > r.+I)

'fre

'-P - P 
0 MN 0 O
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so that x(eo) - ri or K+1 for e0 E K If E2 denotes the space generated by

K2  one has E D E so that dim E2 - +k (k > 1). Clearly, 2 + k coincides

with the maximum number of linearly independent elements in K2 and

eOl .. 'eo 0,+k are linearly independent elements of K hence

E2 - span eo I .... eo,1+ k

while x2+1 ..... +k" As E1 and E 2 as well as their respective dimensions

2 and I+k are independent of the canonical set of generalized Jordan chain, so

is k - 2 + k - 2. It follows that x+i . ... K+k are independent of the

canonical set. Repeating this procedure as many times as necessary yields

independence of xl ... 'xn regarding the choice of the canonical set of gen-

eralized Jordan chains. The integers xi.... n will be called the partial

multiplicities of A - 0 in A(p) and the number

- I + + n * (2.4)

its algebraic multiplicity.

We now introduce the notion of root function (root polynomial in [7]).

Given any e0 o 0 in Ker AO, we call root function corresponding to e0 a smooth

function e(p) with values in X such that e(O) - e0 and define the order of

e(p) to be that of the zero M - 0 in A(p)e(p). Suppose then that e(p) has

order 2 + I >1. Setting

e - - e )(0) , 0 < j < 2

and equating to zero the coefficient of pJ in the Taylor expansion of A(p)e(p)

(obtained from those of A(A) and e(p)) one finds that (e0, ... eI) is a gen-

eralized Jordan chain of A(p). In particular, the order of a root function

never exceeds the largest partial multiplicity x l* Conversely, given a gen-

eralized Jordan chain (e0, ... e ) of A(M), then



-9-

S2 2+16

e(p) - pJe. + A (A)
j-0

Iis a root function of order > I + 1 for every smooth function 6(p). Root func-

tions are essential to make generalized Jordan chains a powerful tool for

theoretical investigation. They even appear to be virtually indispensable in

some of the proofs. A first example of their usefulness can be found in the

proof of the following important result.

Proposition 2.1: Let B(M) and C(p) be smooth mappings with values in X(Y) and

t(X) respectively and suppose that B(0) and C(0) are linear isomorphisms.

Then, (eo, ... ,e2) is a generalized Jordan chain of B(p)A(M)C(M) if and only

if

I i (i) ~

e- - C (0)e. i , 0 < j < 2
J i-0 J-

is a generalized Jordan chain of A(M).

When X - Y - Rm and A(y) is a polynomial, the proof of this statement can be

found in [7, Proposition 1.11, p. 29]. In the context of this paper, it has

also been given in [16, Proposition 2.2]. Although [16] deals with the case

dim Ker A0 - 1, the proof is equally valid in general and hence will not be

given again. Proposition 2.1 can actually be established without the help of

root functions but becomes a rather cumbersome exercise in combinatorics.

The following corollary is immediate.

Corollary 2.1: Let B(p) and C(p) be as in Proposition 2.1. Then, A - 0 has

the same partial and algebraic multiplicities in A(p) and in B(A)A(p)C(M).

Remark 5: More generally, in both Proposition 2.1 and Corollary 2.1 the map-

ping B(.) (resp. C(.)) may take values in t(Y, Y) (resp. X(X, Y)) with Y and Y

'S.
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(resp. X and X) isomorphic Banach spaces. 0N

Another characterization of the algebraic multiplicity.

p..p

For every integer p > 1, define E (Xp , YP) by

A0

AP (2.5)

AA I  A0Ap- 1  A1 A0

We shall repeatedly use the trivial observation that for p > 2, -l identi-

fies with the (p-l)x(p-l) upper left corner as well as with the (p-l)x(p-l)

lower right corner of*p.

Suppose now that xi < - is the maximal length of the generalized Jordan

chains of A(M) and let p > x 1 Then, if (e0, ... ep-1 ) e Ker4". , one must

have e0 - 0 for otherwise it is immediate that (e0, ... ,e 1 ) is a general-

ized Jordan chain of A(p) with length p > x 1 a contradiction. Thus, for

P > 'e1 an element of Kerck has the form (0, e I, ... ep 1 ). It is then

7 .0 obvious that (e1 , ... e E Ker4p I. The converse is just as trivialV

since the mapping

(e0. . . .. . ep-2 ) E X
p - I -, (0, e0, ... ep- 2 ) E X

p

induces a canonical injection of Ker 1 into Ker*. Summing up, we have

that, to within canonical identifications, the sequence KerD. stablizes for

*6p.

A Conversely, suppose that there is a smallest integer k > 1 such that

Ker +l Ker ... Then k - xi Indeed, let (e ... epl be a generalized

S00



Jordan chain of A(p) with length p > k. Clearly, (e0, ... ep) e Kerk'.
P-1 p

In particular, (e0, ... ,ek) E k+ But, since Kerk+l - Ker+, one

must have e0 - 0, contradicting the fact that (e0, ... e pl) is a generalized

Jordan chain. This shows that K, < k. To prove , 1  k, recall that

Ker k-1 o Ker k by definition of k (assuming k > 2, but the problem is obvi-

ous if k - 1). Hence, there is (e0 .... e kl) e Kerk.-k with e0 o 0, which

means that (e0, ... ek-l) is a generalized Jordan chain of A(p) with length k

so that k < x

As a result of dim Ker A < -, one finds that Ker 4  is finite dimen-
0 p

sional for every p > 1. It turns out that the algebraic multiplicity

-Pi + 
"" + xn is nothing but

;S- dim Kerk- -dim Kerq- , Vp > 'I (2.6)
1p

The proof of this statement is postponed until we can make use of a local

Smith form (cf. Section 4). Relation (2.6) shows that calculation of the

algebraic multiplicity amounts to calculation of a null-space, which may have

some importance in the applications.

Remark 6: If A 0 - A(O) e Isom(X, Y), it is consistent with the definitions and

results of this section to define the partial and algebraic multiplicities of

- 0 in A(p) to be 0. Also, for any -0 , 0, the partial and algebraic multi-

plicities of A0 in A(M) are defined as those of p - 0 in A(p + M0 ) . 0

Fo

Ia
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3. GENERALIZED JORDAN CHAINS AND LYAPUNOV-SCHMIDT REDUCTION

With X and Y being real Banach spaces as in the previous section, let us

consider a 'PI mapping F(- F(p, x)) from R x X to Y, locally defined near the

V origin and satisfying

F(p, 0) - 0 (3.1)

It is the aim of this paper to discuss conditions ensuring bifurcation of

solutions to F - 0 from the trivial branch x - 0 and near the origin (0, 0).

Assuming that Dx F(O, 0) is a Fredholm operator with index zero, it is a stan-

dard procedure to make the problem into a finite dimensional one through the

so called Lyapunov-Schmidt reduction. We shall denote by X0 and Y the null-

space and range of D F(O, 0) respectively, and make the choice of (topologi-

cal) complements X of X and Y of Y For x E X, we shall set
1 0 1 0

x - C + x

according to X -X0 G Xl,and call Q and Q1 the (continuous) projections onto

Y 0 and Y respectively. Writing the equation F(js, x) - 0 as the system

QoF(, e + xI) - (3.2)

QIF(A, e + x I) - 0

it follows from QoDxF(O, O)J X being an isomorphism of X 1 to Y0 that the first

* equation is solved through the Implicit function theorem in the form

X- e)

where 0 is of class I on a neighborhood of the origin in R xX0 with values in

X 1 and verifies

O(A, 0) - 0 (3.3)

For future use, note that differentiating the identity QoF(A, e + O(M, e)) - 0
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w.r.t e and setting e - 0 results in

QoDxF(p, 0 )(IX 0 + D C(p, 0)) - 0 (3.4)

In particular, this yields

-U D 0(0, 0) - 0 (3.5)

Substituting x e) in the second equation (3.2) leads to the reduced

equation

f(i, e) - Q1F(M, e + O(M, e)) - 0 , (3.6)

equivalent to F(p, x) - 0 near the origin. As usual, the mapping f will be

referred to as the reduced mapping of F.

Whenever it is smooth, the mapping

A() - D F(p, 0) E X(X, Y) (3.7)x

satisfies the general conditions of Section 2. In particular,

A 0 - A(O) - D xF(0, 0) has a finite dimensional null-space and all the notions

previously developed for A() make sense. Now, setting

a() - D f(M, 0) E X(X0 , YI) , (3.8)

the same comment applies to a(M). Indeed, although D f is merely continuous,

D f(M, 0) is smooth. To see this, note that from (3.4) and (3.7)

10

.,D e (1, 0) - -[Qo0A ( ) I XI]-I(QoA(I) I X0)

is smooth since A() is smooth and hence, upon differentiating (3.6)

a(M) - Q1A(M)(Ix0 + D (M, 0)) , (3.9)

is smooth, too. Theorem 3.1 below shows that Lyapunov-Schmidt reduction

preserves all the properties of generalized Jordan chains.
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Theorem 3.1: The length of the generalized Jordan chains of A(A) is (uni-

formly) bounded if and only if the length of the generalized Jordan chains of

a(p) is (uniformly) bounded. Moreover, in this case, the partial multiplici-

ties of y - 0 are the same in A(p) and a(p).

Proof: From the definitions, it suffices to show that, given any generalized

Jordan chain of A(;&) (resp. a(p)), say (e0 . . ... . e), one can find a general-

ized Jordan chain of a() (resp. A(u)), say (e0 , el . . . . . e2 ) with the same

length and starting with the same element e0.

First, consider a generalized Jordan chain (e0 ,.. . e) of A(p) and the

root function

e(p)- X Jiej E X (3.10)

J-0

Then, A(p)e(p) vanishes together with its first I derivatives at p - 0, hence

A(,)e (A) - ju+1 (A) , (3.11)

for some smooth Y-valued mapping a(p). Let 0: RxX0 xXI -+ X be defined by

EC(, e, xI) - + D (C, 0))e + x- e(p)

From (3.5) and (3.10), 0(0, e0 , 0) - 0. On the other hand, for

% _ ' (hO , hI ) r XoXX 1 X, one finds

D( ' 1) fi(0 e0 , 0) (ho, h) - h0  + h1

Hence D(E,xI)0(0, e0 , 0) E Isom(X0 XXl, X) and the solutions to # - 0 near

(0, e0, 0) are given by a curve (e - eo(0), x1 - eI(A)) with smooth eo0)and

el.) From the definition of

e(p) - (Io + D O(A, 0))eo(p) + e(AA)

0

-~~~ % -%~~.V~ % %
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Explicit formulas for e0 (p) and el(p) are easily obtained from the observation

that 0 above is linear in (e, xl) (so that the use of the Implicit function

theorem is rather artificial here). But these formulas are not useful in what

follows. With the above expression for e(p), one may rewrite relation (3.11)

as

2+I

A(A)(Ix + D f(p, O))e 0 () + A(A)e 1 () - a Q(A) (3.12)

00VRecall that QO+ QI- Iy and QOA(p)(Ix0 + D (p, 0)) - 0 (cf.(3.4) and (3.7)).

Thus, (3.12) becomes

QoA(I)eI(A) + QIA(J)(IX + D O(p, 0))eo(A) + Q1A(A)eI(m) - 1+1

0 001 1

Writing a(.) - Q Oa() + QIQ(p) and equating components yields

QoA()eI(A) - A+1 Qoa(J) (3.13)

QlA(A)(IXo + D C(A, O))eo(A) + Q1A(A)e1 (A) - A+IQI(A )  (3.14)

As QoA(O)Ix E Isom (XI, YO), one has QoA(M)IX E Isom (Xl, Y0) for I small

enough and hence, from (3.13)

e - (+1P) (3.15)

with

0( 0) - [QoA(p) XI]-Q0a(;)

Substituting (3.15) into (3.14), we get

QIA(A)(Ix0 + D 0(,u, 0))e -06+1(QI() - QIA(A)O(p)) (3.16)

. Due to (3.9) and since e - e 0 o 0, this means that e0 (p) is a root func-

tion of a(p) with order at least 1+1, i.e. (e0  el ..... e2) with

e.- (1/j)eJ(0), 1 < j <2, is a generalized Jordan chain of a(u).

* A~'UsV \' '' . . iS S ~V~ u&
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Conversely, let (e0. . ..  e2) be a generalized Jordan chain of a(A) and

let e(p) denote the root function

2
e(p) - A ej E X

j-0

Using (3.9), this means

QIA( p)(I + D 4(A, 0))e(A) - +1 1 OA)

for some smooth Y1 -valued function ai(p). As QoA(A)(Ix0 + D (p, 0)) a 0

(cf.(3.4) and (3.7)), this also reads

.2+1

A(p)(IXo + D f(p, 0))e(p) - A 1 i(a )

From (I + D 0(0, 0))e(0) - e(0) - e0  (cf.(3.5)), we infer that

0
, e( ) - (Ix + D ( 0))e( ) is a root function of A( &) with order at least

e e wt (j)
e2+1, i.e (e-" 1  with e" (i/j!)e (0), 1 < j <2, is a general-

ized Jordan chain of A(M), and we are done. 0

Theorem 3.1 provides a good motivation for further study of generalized

Jordan chains in the finite dimensional case, which will be taken up in the

next section. As a by-product of the results presented there and Theorem 3.1,

we shall see that our definition of algebraic multiplicity coincides with that

given by Magnus in [13] (see Section 1). Indeed, let A(p) E X(X, Y) be a

smooth parametrized family and set F(p, x) - A(M)x, which agrees with

A(A) - D F(p, 0). Now, define C(A) e t(X) by (setting x - e + x1 again)x

C( x - (I + D f (,u, 0))c + x 1

As a result of QoA(p)(Ix + D (p, 0)) -0, the operator A(A)C(A) has the block

0

decomposition

. V*
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'( ) QIA( ))Ix

. A(s)C(u) - QAMI

0 Qo A() IXI

upon identifying Y with YI x YO, and where a(A) is as in (3.9). Next, define

B(A) E t(Y) by

S I  Q A ( A ) I x I [ Q A ( j ) I X I 1 - I

1 11

~~B(M) -,

0 Y 0

* so that

B( )A(p)C(0) - QoA(P)IxJ (3.17)

As B(0) - Iy and C(O) - IX, it follows that A - 0 has the same algebraic mul-

tiplicity in A(p) and B()A()C(M) (Corollary 2.1) and also in B(A)A(A)C(P)

and a(A) (Theorem 2.1). As a(p) E t(X0 , Y1 ) and X0 and Y have the same

dimension, it will follow from Section 4 and after obvious identifications

that the algebraic multiplicity of p - 0 in a(A) equals the order of the zero

A - 0 in det a(j&). If now multiplicity is understood in the sense of Magnus,

- 0 has the same algebraic multiplicity in A(p) and B(p)A(A)C(p) ([13,
V,,

Theorem 2.4]) and also in B(j)A(j)C(p) and a(A) ([13, Theorem 2.7] and rela-

tion (3.17) above). Finally, in [13, Theorem 2.61 it is shown that the alge-

braic multiplicity of j - 0 in a(A) coincides with the order of the zero A - 0

in det a(p) and the assertion follows.

V -%N N N
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Remarks: 1) Although Magnus' algebraic multiplicity coincides with ours, his

%partial multiplicities are different. The partial multiplicities introduced

here agree with the definition in Gohberg et al. (7]. 2) Coincidence of the

algebraic multiplicities makes complementary properties established by Magnus

available (and indeed easier to prove in his approach). For instance, given

two families A(p) E Z(X, Y) and B(p) E X(Y, Z) with Z another real Banach

space and A(O) and B(O) Fredholm with index zero, the algebraic multiplicity

of p - 0 in A(p)B(p) is the sum of those in A(u) and B(M) ([13, Theorem 2.4]).

Another interesting result is that given a smooth function a(p) with c(0) = 0,

-, the algebraic multiplicity of p - 0 in A(a(p)) is k times the multiplicity of

p - 0 in A(M) where k is the order of the zero y - 0 in a(A) ((13, Theorem

2.9]). An obvious corollary is that the multiplicity of ji - 0 in A(M) cannot

be made odd through any smooth change of scale in p (not necessarily a dif-

feomorphism) if it is not odd in the first place, but there are other applica-

tions. 3) Another approach is taken by Ize [9], who defines the algebraic

4 multiplicity of A(p) - D xF(p, 0) via the reduced mapping, i.e. in

_ a(p) - QIA(p)(Ix + D O(M, 0)) (cf. (3.9)), to be the order of the zero i - 0

in det a(p). He next proves some independence of his definition regarding

Lyapunov-Schmidt reduction. More precisely, he shows that the parity of the

41.

. algebraic multiplicity is independent of the Lyapunov-Schmidt reduction.

Theorem 3.1 is much stronger since it asserts that the partial multiplicities,

hence the algebraic multiplicity and a fortiori its parity, are independent of

the Lyapunov Schmidt reduction. 0

I'o
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4. LOCAL SMITH FORM FOR THE FINITE-DIMENSIONAL CASE.

In this section, we continue the analysis of Section 2 when X and Y are

finite dimensional spaces with the same dimension. Fixing bases, we can then

. assume X - Y - and that A(A) is identified with its matrix in the canonical

m
basis of Rm. With B(p) and C(p) independent of p in Corollary 2.1, it is

.-* immediate that the partial multiplicities of u - 0 in A(A) are independent of

these identifications. On the other hand, the vocabulary and methods of

matrix theory are especially convenient for the purposes of this section. Our

first aim here is to show that, provided that the length of no generalized

Jordan chains of A() is infinite, then A(p) admits a "local Smith form".

VThis means that for Ij small enough A(p) can be written as

A(p) - M(p)D(p)N(j) , (4.1)

where M(p) and N() are mxm matrices (operators) with constant nonzero deter-

minants and D(p) is diagonal of the form

D(I) - diag ( " ..1. d d (,A) n (np). ..... d (W) (4.2)

where x, > ... > x > 1 are the partial multiplicities of M -0 in A(A) and

d.(0) o 0, 1 < i < m. Among other things, we shall see that assuming that the

length of all the generalized Jordan chains of A(M) is uniformly bounded is

equivalent to the seemingly weaker requirement that no chain can be continued

indefinitely. Other results of some practical importance will also be

derived.

When A(p) is a polynomial, existence of a local Smith form is easily

- deduced from an available "global" Smith form (cf. [7]). If A(M) is not a

polynomial, there is a no global Smith form but obtaining a local one is actu-

ally technically simpler than in the polynomial case (although the basic idea
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is the same). In what follows, we suppose that no generalized Jordan chain of

A(p) can be continued indefinitely, and argue by induction on the dimension m

of the space R M . If m - 1, A(ju) is a real-valued function a(p) with a(O) - 0.

It is readily checked that a generalized Jordan chain (eo . .... , e) exists if

and only if a (0) - 0, 0 < j <2. Impossibility of continuing a chain inde-

finitely thus amounts to saying that a (k)() # 0 for some index k > 1. If so,

one may write a(u) - ;k d(p) with d(0) o 0 and the result follows with-'f k d

M() - 1, D(A) - Au d(A) and N(M) - 1. Let then m > 2 and suppose that

(m - l)x(m - 1) matrix-valued functions M0 (p), D0 (,) and N0 (A) with M 0 (p) and

k
NO(A) having constant no,.zero determinants and D0 (p) - diag(p d04),

0 k0
k... dm1 (A)), k. > 0, di(O) 0, 1 < i < m - 1, can be found so that

m-l1.

A .A) - M0O(I)D 0 ()N 0( ) , (43

whenever A0 (A) is a smooth parametrized family of (m - l)x(m - 1) matrices,

none of whose generalized Jordan chains can be continued indefinitely. To

prove that the same is true with A(14) - (aij()) being mxm, let us first

observe that one among the coefficients a.. (ps) does not vanish to infinite

order at the origi, . Otherwise, A (j ) (0 ) - 0 for every j > 0, so that every

root function has infinite order, a contradiction. Multiplying on the left

and on the right by appropriate permutation matrices, one may then assume that

a mm(,U) has finite order k at the origin, say

k
a(s- b (,u)mm( mm

d with k > 0 an integer and b (0) o 0. Since any element a. '4) can be put in
mm ij

ft4' the last row and last column through this procedure, we may as well assume

that the order of a (M) is the smallest possible among all a. (M)'s, namely
34anm ij

that

N % %%%p
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k
a ij () ' bi.(p) , I < i, j < m

for some smooth function b ij(p). Therefore, multiplying on the right by the

*matrix (with determinant one)

1

0

bml bm2
b 1

mm mm

the matrix A(p) is transformed into one which has zero elements on its last

p. row, except for a mm() - mm(A) which is unchanged. For simplicity of nota-

tion, we now assume that A(A) had this particular structure in the first

place. Then, multiplying on the left by the matrix (with determinant one)

b
1 0 •0

mm

b
* b2m

b
mm

04

does not affect the last row but transforms A(A) into a matrix having zero

elements in its last column, except for a r(p) - k bm (A) which is unchanged.

In summary, these operations reduce A(A) to the case when

A 0 () 0

A(p) - , (4.4)

k
mm

% %.



-22

>2, with AO(A) a smooth family of (m - 1)x(m - 1) matrices. No generalized Jordan

1:''chain of A 0(p) can be extended indefinitely since the block diagonal decompo-

sition (4.4) of A(p) shows that the same would be true of at least one gen-

eralized Jordan chain of A(p), a contradiction. If A(,) has been put into the

form (4.4) after multiplication by smooth parametrized families of invertible

matrices as above, the same argument works via Proposition 2.1. Using the

decomposition (4.3) for A0 (.), one finds

H0 (14 A)10 N O(A) 0]

A(p)

0 b
mm

This yields the desired decomposition for A(p). To be complete, one must also

observe that, upon multiplying by appropriate permutation matrices, it is pcs-

sible to assume that the diagonal elements of D(p) are arranged in decreasing

k.
order, say D(p) - diag (1 i(p)) with k I > ... > k . As Ker A(0) and

-. - -m

Ker D(0) have the same dimension n, one has

k, > .. > k > 11- n-

kn+l k m 0

From the diagonal structure of D(p), it is easily checked that no gen-

eralized Jordan chain of D(A) has length > kl hence the length of the gen-

' eralized Jordan chains of D(p) is uniformly bounded. The partial multiplici-

ties of M - 0 in D(p) are thus well defined. Using root functions, it is%'p

straightforward to show that they coincide with k, . . . . kn. From Proposition
. n'

2.1, A(p) may replace D(A) in this statement. In the notation of Section 2,
*' 4,' '

.4 this means

. k. 1 < i<n

WW 't 'k -St!
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Also, det M(A) - det N() - 1 in our construction, so that

det A(m) - det D(). As det D(ju) - 'Yd 1(p). -dm (p) with di(0) 0 0, 0 < i < m

and

:7 -y " I +'"+ PC '

1 -n

we infer that det A(p) vanishes up to order 7 at the origin. Conversely,

assuming that det A(p) vanishes up to finite order at the origin, it is easily

seen that A(i) possesses a local Smith form through arguments similar to those

used above. But we have just seen that existence of a local Smith form

implies existence of partial and algebraic multiplicities, the latter coincid-

ing with the order of the zero ju - 0 in det A(p). In particular, this shows

that assuming that no generalized Jordan chain of A(p) can be continued inde-

finitely amounts to assuming that p - 0 has finite order as a zero of

det A(p). If so, the length of the generalized Jordan chains of A(p) is uni-

formly bounded.

Application: Proof of the multiplicity formula (2.6).

Existence of a local Smith form allows for a simple proof of the multi-

plicity formula (2.6). To begin with, in a notation similar to (2.6), denote

by-p E X(Y P) andC E X(X P ) the operators associated with smooth families
p p

B(p) C X(Y) and C(p) e X(X) like the operatoro4- is associated with A(M).
p

Clearly,8 and p are isomorphisms whenever B(0) an C(0) are isomorphisms.. p P

In this case

dim Kerk p - dim Ker.pAp ep

Recall that B(p) and C(p) can be chosen so that, in the notation of Section 3,

B(A)A(p)C(y) has the block-diagonal decomposition (cf. (3.17))

.
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a(p) 0* . - I"
• - .-. (4.5)

0xi] QA(A) I(5

with a(A) given by a(A) - QIA(A)(Ix + Df(A, 0)) (cf. (3.9)) where 0 is

defined through F(A, x) - A(,u)x and condition (3.4). It follows that formula

(2.6) can be proved with A(A) of the form (4.5). Set

b(A) - QoA(L)lx E X(XI, Y0 ) ,

and, for j > 0

a. - (I/j!)a (j ) (0) E X(Xo, Y1 )

b. -(/j! (0) - X(Xl, Y0 )

With this notation, the operator A. in (2.1) has the block decomposition

a A.

5,.-., b ]

Thus

00
a 1 0

0 b

P " •

-a. 0 a 0
. p-i 0

0 bp0 b0
" p"

-'5.

-'LSL

'*.5
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As b0 e Isom (Xl, Y), it is immediate that dim Ker4 - dim Kera. where
0 0 p p

a 0 0
a 1

- "Xe y( X

00

p 1p 1 0

a aI  a0

From Theorem 3.1, the algebraic multiplicity 7 is equally computed from A(A)

or a(p), and&- plays the same role as4_ upon replacing A(p) by a(A). There-Op P
,-. fore, the problem comes down to proving formula (2.6) in the finite dimen-

sional case. From the existence of a local Smith form, it is possible to

duplicate the proof given in [7, Proposition 1.15, p. 35] for the case when

a(p) is a polynomial.

:Remark 1: If the algebraic multiplicity is defined, then A(M) is invertible

for Ij&I P, 0 small enough. This follows from the decomposition (4.5) of

B(A)A(p)C(M) since a(p) is invertible for II o 0 small enough and QoA(O)Ix

is invertible. Invertibility of a(p) is indeed ensured by existence of a

local Smith form. Conversely, if A(p) is analytic and A(M) is invertible for

JAI o 0 small enough (and A(0) is Fredholm with index zero) the converse is

true. Indeed, from (4.5) again, a(p) is invertible for II o 0 and analytic.

Hence det a(A) has an isolated zero at A - 0. Necessarily, this zero has fin-

ite order, so that the partial multiplicities of A - 0 in a(M) are defined.

The assertion follows from Theorem 3.1 since a(A) is obtained from A(A)

through Lyapunov-Schmidt reduction of F(p, x) - A(A)x. 0
I-

V.V
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5. AN ALTERNATE PROOF OF THE KRASNOSELSKII-MAGNUS THEOREM

Taking A) - D F(p, 0) with F of class as in Section 3, we shall nowx

give a proof of Theorem 2.2 in Magnus [13], a generalization of the famous

theorem by Krasnoselskii, based on Lyapunov-Schmidt reduction. Bifurcation

for the reduced equation is next proved using a standard argument. In his

proof, Magnus also makes use of a reduction to the finite dimensional case,

which differs from the usual Lyapunov-Schmidt procedure. The reason for this

is that Theorem 3.1 seems to be difficult to prove using Magnus' definition of

algebraic multiplicity (reviewed in Section 1). In complementing remarks, we

.e* rhall also see that the smoothness assumptions can be weakened in a way

Ndepending of the partial multiplicities.

-.a..

Since A(O).- A - D F(O, 0) is Fredholm with index zero by hypothesis,
0 x

let us first observe that algebraic multiplicity of p - 0 in A(p) is defined

upon merely assuming that no generalized Jordan chain can be continued inde-

finitely. Indeed, the same is then true with a(A) - D f(p, 0) replacing A(A),

where f denotes any reduced mapping of F (cf. (3.6)), as it follows from argu-

ments in the proof of Theorem 3.1. From the results of Section 4 and Theorem

3.1, the length of the generalized Jordan chains of A(p) is uniformly bounded,

which suffices to prove the claim. Moreover, the algebraic multiplicity of

* p -0 in A(p) equals the order of p - 0 as a zero of det a(p). With Taylor's

e: formula and since f(p, 0) - 0, one has

f(p, e) - a(p)e + g(p, c)

with g of class e since f is of class rl and a(p) is smooth. Obviously,

g(p, 0) = 0 and D g(", 0) - o. If F (hence f, and also g) is of class ' 2

bifurcation for f - 0 follows from applying [3, Theorem 7.1, p. 201] provided

that p -0 has odd algebraic multiplicity y. If F is onlye I and I is odd, the

% % %. d ~ E '
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.J same conclusion holds. To see this, it suffices to observe that the same

result in [3] remains valid if one makes use of the "strong" version of the

Implicit function theorem (see e.g. Lyusternik and Sobolev [12]) in the proof

of [3, Lemma 7.2, p. 202]. Accordingly, we have shown

Theorem 5.1: let F( - F(,u, x)) be a mapping from RxX to Y with X and Y

real Banach spaces, locally defined near the origin and verifying F(P,0)) - 0.
- Suppose that D F(A, 0) is smooth and that A0 - D xF(0, 0) is Fredholm with

x 0'

index zero. Finally, assume that the algebraic multiplicity -y of A - 0 is

defined. Then, bifurcation occurs if -y is odd and the bifurcated solutions

contain a continuum.

In a given problem, finding out the algebraic multiplicity I can be done

using Magnus' definition in terms of projections, or our definition in terms

of generalized Jordan chain or else from the calculation of an appropriate

null-space according to formula (2.6). Whatever the option taken, the success

of the procedure depends much on what is actually known about the derivatives

A()(0). In any case, many corollaries to Theorem 5.1 can be proved formulat-

U ing ad hoc hypotheses. We shall only mention one particular situation, namely

when y - n( - dim Ker A0) and n is odd. Obviously, 7 - n if and only if

e . - 1. It is straightforward to check that this amounts to assum-
1n

ing

A I (Range A 0) n Ker A0 - (0) , (5.1)

and one finds again Theorem A of Westreich [20], who has another proof, not

involving algebraic or partial multiplicities. His Theorem B -- on bifurcation

from a smooth curve -- is also a particular case of the result: of the next

section. Note that condition (5.1) generalizes that of Crandall and Rabi-I"
nowitz in [5].

A - & 0 11
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It is also worth mentioning that smoothness of D F(A,O) is unnecessarily
x

restrictive in Theorem 5.1. Indeed, assuming D xF(, 0) to be of class r with

r > -y is sufficient to obtain a local Smith form as in Section 4 and repeat

all ocher necessary arguments to prove Theorem 5.1. But even this assumption

can be weakened to r > xI (of course, r > I or r > K, can only be observed a

posteriori), although the method of Section 4 to obtain a local Smith form

fails. Assuming r > nil reduction of the problem to proving bifurcation for

f - 0 remain true and the proof of Theorem 5.1 goes through provided that one

can show that det a(14) changes sign as p crosses 0. This is where the results

of Section 4 help in the smooth case. An alternate procedure is as follows-

write

i

a(,) - K ! a ( 0) + 1 I (p) (5.2)
j-O

with R(M) continuous and R(O) - 0. From the definition of KI, a(A) and the

principal part of its Taylor expansion in (5.2), denoted by a(p), have the

same generalized Jordan chains. Observe in passing that a chain with length

< K involves derivatives of a(A) of order < xi - I only, so that it is actu-

4
ally possible to check that no chain has length > KI when a(p) is only of

class From the above, a(p) and a(p) have the same partial multiplici-

ties, hence the same algebraic multiplicity. As a(p) is a polynomial, it

n
possesses a local Smith form after identifying X0 and Y with R . This means

that there are smooth parametrized families m(A) and n(p) of invertible opera-

tors with constant nonzero determinants such that

5- a(p) - m(p)d(p)n(p)

% K K

and d(p) - diag (U .. n p . From (5.2)

'5--1 -- 1i1

m()a(p)n (() -(p)) + P R(m) (5.3)

.%
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with R(p) - m-l ()R(p)n- (u). In particular, R(0) - 0. Now, for p - 0, d(p)

is invertible and

1i __ 1 - A a- ) (A
d-(A)M (p)a(-)n (p) - I + (p )(p)R()

" -" but ( M-I(p) - diag (1, A . ..... )has a continuous extension at

U - 0. As R(0) - 0, we find that det(I + uK d(T ) ()) is positive for jpj

small enough. The above relation thus shows that (det d-(p)) det a(p) has

the same sign for both p > 0 and p < 0 with II small enough. If

- I+'" + X n is odd, it follows that det a(A) changes sign as p crosses 0

since this is true of det d(p).

Remark 1: Let X - Y and A(p) - (I - A0 L) - pL with L E X(X) compact and

i/ 0 E Sp(L). The generalized Jordan chains of A(p) are usual Jordan chains
0th

of L corresponding to the eigenvalues 1/A0 of L, the i chain of any canoni-

cal set generates a cyclic Jordan subspace with dimension K. and
1

- - 1 + . + n is the dimension of the generalized null-space of I - 0 L,

. namely the algebraic multiplicity of 1/A0 in the usual sense. In this case,

Theorem 5.1 coincides with Krasnoselskii's, apart from extra regularity

assumptions. 0

Remark 2: If dim Ker A0 - I (i.e. n - 1) more can be said about the structure

of the bifurcated solutions and another criterion for bifurcation can be

found, see [16] for details. 03

V1
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6. INVARIANCE UNDER CHANGES OF VARIABLES AND APPLICATIONS.

We shall begin with a brief review of results on equivalence between

Banach space valued mappings. In the finite dimensional case, this notion

lies at the bottom of singularity theory. Its first appearance in bifurcation

theory dates back to the paper by Golubitsky and Schaeffer [8] in their study

4, of perturbed bifurcation. In [8], equivalence was used in connection with the

theory of unfoldings towards finding normal forms for a given problem but many

other important applications exist. One of them will be given here to a gen-

eralization of Theorem 5.1 when bifurcation is studied from an arbitrary

curve, not necessarily the trivial branch.

* Consider four real Banach spaces U, V, U and V and a pair of sufficiently

* -!smooth mappings

C: U-.V ,G:U

*locally defined near the origin. The mappings G and Gare said to be

equivalent if there are sufficiently smooth mappings

r V .Isom (V, V

-p.-

- -

both locally defined near the origin and with p being an origin preserving

local diffeomorphism, such that

G(u) - r(u)G(p(u)) (6.1)

* for u in a neighborhood of the origin in U. It is well known (and easily

checked) that the above notion encompasses the apparently more general notion

S'." of equivalence in which

"G(u) (u, G(p(u))) (6.2)

V%

JN.6W.
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* ' where UxV - V is a sufficiently smooth mapping with O(u, .) being an

origin-preserving local diffeomorphism of V to V.

Equivalence as in (6.1) preserves local bifurcation properties, for the

*2 local zero sets of G and G are deduced from each other through the local dif-

feomorphisms p and p . A "good" bifurcation theorem should then comply with

the requirement that it equally applies with G or any mapping G equivalent to

G. To begin with, we will be interested in proving independence of the

hypotheses of Theorem 5.1 under changes of variable, i.e. under equivalence

(6.1) when U - U - RxX, - V - Y and G - F. Clearly, Theorem 5.1 cannot be

stated without referring to the trivial branch and hence changes of variable

p(p, x) must leave the trivial branch invariant. Any such change of variable

has the form

p( 0, x) - (aO(, x) , (p, x))

with 0(j, 0) - 0, and hence D a(0, 0) 0, D x(0, 0) E Isom (X). Setting' x

F(p, x) - r(p, x)F((js, x) , (p, x)) , (6.3)

an elementary calculetion provides (note that D F(A, 0) - 0 as a result of

F(p, 0) - 0)

DF (, 0) - 7(-A, 0)D xF(a(, 0) , 0)D X(A, 0) (6.4)

For notational convenience, we shall set

A(p) - D F(A, 0) A(j) - D F( , 0)x 'x

and

B(6) - ;(, 0) , C(p) - Dx (j, 0)x

Letting

- ap, 0)

i'%
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relation (6.4) becomes

-~) B(p)A~o<p))G(p).

Assuming the mappings r(., 0), a(., 0) (i.e. a) and (., 0) are smooth, the

hypotheses of Theorem 5.1 will equally be satisfied with F or F if the alge-

braic multiplicity of p - 0 in A(p) equals the algebraic multiplicity of p = 0

in A(p). Indeed, A(0) is Fredholm with index zero if and only if this is true

of A(0) since B(0) and C(0) are isomorphisms. From Corollary 2.1 (see also

Remark 5 of Section 2) it suffices to compare the algebraic multiplicity of

- 0 and M - 0 in A(p) and A(a(p)) respectively. Equality of these follows

from Remark 2 of Section 3 since a'(0) o 0.

Now, consider a smooth mapping 7-.W(u) defined on a neighborhood of the

origin of some Banach space U with values in another Banach space Y. Suppose

that'(0) - 0 and D&(O) is a Fredholm operator with index one such that

dim Ker D1'(0) - n + 1 (n > 1) (6.6)

This implies that D7(0) has rank-deficiency n. Suppose that a smooth curve

u(M) with u(O) - 0 is known to be in the local zero set of , namely

- 0 , (6.7)

where u'(0) - u0  0 (a condition for instance satisfied when u(M) is an
0

arclength parametrization). This situation is considered in [16] under the

dextra assumption n - 1, but the entire analysis can be repeated verbatim. We

shall therefore pass to the conclusions and refer the interested reader to

[16, Section 4] for further detail. Differentiating (6.7), one finds

"'R(0)u 0 - 0, namely u0 e Ker g(0) . Choosing X to be an arbitrary complement

of Ru0 in U, and for (M, x) in a neighborhood of the origin in RXX U, set

F(A, x) - (u(p) + x)

W % %
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Clearly, D F(p, 0) - D(O) Ix is Fredholm with index zero while bifurcation
.7 X

from the curve u(p) in-7 - 0 amounts to bifurcation from the trivial branch in

F - 0. The hypotheses of Theorem 5.1 must then be checked with

, A() - D (u()) X

and whethi or not they are satisfied. is independent of the choice of the com-
p

plement X of the line Ru0 (the tangent to the curve of known soluti3ns at the

-.origin) as well as of the regular parametrization u(p). In particular, this

allows for an intrinsic definition of the algebraic multiplicity of the singu-

larity ofq at the origin, viewed in a smooth curve of solutions to - 0.

Assumptions of regularity on;! and u(.) can be weakened according to the com-

ments made in Section 5.

. -4

'.

'
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7. VARIATIONAL BIFURCATION THEOREMS.

The question that most naturally arises in view of the results obtained

in Section 5 is whether the notions previously developed are also appropriate

for proving bifurcation theorems for general variational problems. That the

answer to this question is positive best illustrates the advantage of our

-approach. Indeed, no such result is derived in Magnus [13] or Ize [9] and

'.-- neither the reference book by Chow and Hale [3] nor the recent monograph of

Rabinowitz [18] contains any such theorem, except of course for the special

class of nonlinear eigenvalue problems.

To begin with, we shall establish a bifurcation theorem for general var-

ational problems in the finite dimensional case. More precisely, let

F - F(p, x) be a ' mapping locally defined near the origin of R x Rn with

values in Rn and of the form

F(p, x) - VJ(, x) , (7.1)

where J is some real-valued functional. Here and in what follows, "V" denotes

the gradient operator with respect to the variable x alone. We shall further

assume that F(., 0) - 0 and set

A(p) - D xF(p, 0) E .X(Rn) (72)

O Of course, A(M) is selfadjoint for every p. To make the question significant

of whether nontrivial solutions to F - 0 bifurcate from (0, 0), A(O) must be

singular. Suppose that A(M) is nevertheless invertible for IpI > 0 small

O enough: then, the Morse index of A(M) (number of positive eigenvalues of

A(W)) is constant for p > 0 and p < 0 with IMI small enough. Denote these

indices by h and h respectively. In Theorem 7.1 below, we show that the

condition h+ o h guarantees bifurcation. This will be obtained as a simple

.,I

%,
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- application of C. Conley's theory to the (local) flow defined by the differen-

tial equation

d- - F(p, x) (7.3)
dt

In particular, neither the statement nor the proof of the theorem makes refer-

ence to partial or algebraic multiplicities. These will appear in connection

with the condition h o h and used as a substitute for it in the infinite

. dimensional case when the Morse index is no longer defined and when Conley's

theory does not directly apply. Regarding the definition and properties of

*. Conley index, we shall make reference to the easily accessible book by Smoller

[19]. Another reference is of course Conley's original monograph [4 j.

Theorem 7.1: If h # h , nontrivial solutions to F = 0 bifurcate from (0, 0).____ _ - + - _ _

Proof: Irrespective of the condition h + h_, bifurcation obviously occurs ;f

"-i x - 0 is not an isolated solution to F(O, .) = 0. In the remainder of the

proof, we shall then make the non restrictive hypothesis that x = 0 is an iso-

lated solution to F(0, .) - 0. Then, it follows from [19, Theorem 23.32, p.

503] and the gradient nature of the local flow generated by (7.3) 0 that x = 0

*" is an isolated invariant set. Incidentally, note that the result we intend to

• prove is unaffected by modifying F in such a way that F(p, x) is unchanged

for, say, lxj < 1 and F(p, x) m 0 for lxi > 2. Doing so allows one to speak

* of the global flow generated by (7.3) and makes available the simplified

approach taken in [19, Chap. 22].

Let A denote the open ball with radius 8 > 0 and center 0 in Rn. From

[19, Theorem 22.18, p. 468 and Proposition 22.12, p. 464], A6 contains an iso-

lating neighborhood N with 0 E N. Here, "isolating neighborhood" is under-

stood in the sense of [19, Definition 22.3, p. 460] (and not merely in the
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extended sense of [19, Definition 23.4, p. 481]). Then, N remains an isolat-

ing neighborhood for the flow generated by (7.3) for Iml small enough, and

the Conley index h(S ) of the isolated invariant set S C N, is independent of

* p. As a result, one has S P (0) for either p > 0 or A < 0 (or both). Indeed,
A

. suppose p > 0 and S - (0). Then, since A(p) is invertible, h(S ) - h (see
P / +

[19, pp. 503-504]). Similarly, if p < 0 and S - (01, h(S) - h -. Thus, if.

S - (0) for both p > 0 and u < 0, h+ - h, a contradiction. Because of the

gradient nature of the flow (7.3) S1 o (0) must contain a solution to 'i

F(p, x) - 0 different from x - 0: assuming that it does not, one finds that

S contains a complete orbit. But this orbit must then tend to two different

rest points in both time directions (because F(y, .) is a gradient), one of

which is necessarily nonzero, a contradiction.

In summary, for every 6 > 0 and every A > 0 or p < 0 (or both) with jij

small enough, we have found a pair (p, x ) with x A 0, xP e S c N c A and

F(p, x ) - 0. Since 6 is arbitrary, the desired bifurcation property is esta-

blished. 0

Remark 1: The condition h , h is guaranteed if, for instance, det A(p)
+

changes sign as p crosses 0. Thus, Theorem 7.1 appears as a generalization of

the bifurcation theorem valid under the latter assumption, but only when

F(p, .) is a gradient. 0

n
When the space R is replaced by an infinite-dimensional (real) Hilbert

space X, the two problems arise that the Morse index is generally not defined

and that, in any case, the method based on Conley index is not applicable. A

,F natural procedure is to seek a reduction to the finite dimensional case in a

(1) Modifying F so that F(p, x) - 0 for Ixl > 2 can obviously be
done without affecting F(p, .) being a gradient.

• z
0 -r -

a,,6

~F .06 f %.'s.'~a**-
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, form suitable for the application of Theorem 7.1. Naturally, and this is one

of the difficulties, the reduction must comply with the requirement that it

does not destroy the gradient nature of the problem. Also, conditions that

can be verified directly on the given problem rather than on the reduced one

must be given that ensure h+ h, in the latter.

+ M

We shall retain the same assumptions on F as before, except that now R

is replaced by the space X. We shall write F in the form

F(A, x) - A(,u)x + H(p, x) (7.4)

Since A(p) is selfadjoint, H(A, x) is the gradient of the functional

'PO(, x) - J(M, x) - (A(M)x, x) (7.5)

2. 2Assuming that J and A are of class' 2
, it is obvious that 0 is of class t2

1too, so that H is of class I
. Also, note that

H(p, 0) - 0 , D xH(, 0) - 0 (7.6)

%x

The following lemma is a straightforward but crucial generalization of

[3, Theorem 11.1]. Its proof is given for the convenience of the reader.

%Before, let us recall that a selfadjoint Fredholm operator has necessarily

index zero. For this, see Kato [10], or Yosida [211; the conclusion also fol-

lows from Deimling [6, p. 86].

Lemma 7.1: Suppose that A(O) - A0 is a Fredholm operator (with index zero)

and Ker A is stable under A(p) for p near the origin. Then, in the notation

of Section 3, if Lyapunov-Schmidt reduction is performed with

X - Y - Range A 0  and Y, - X0 - Ker A0 , the resulting reduced equation is

1 0 agA

variational. More precisely, f(p, c) - 0 if and only if f is n critical point

of the functional

-I4,* %
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c E Ker A0  J(', f + 06U, W (2) (7.7)

Proof: Since A(p) is selfadjoint and Ker A0 is stable under A(p), so is

Range A 0 - (Ker A 0 )
1 . Denoting by Q1 and Q0 the projections onto Ker A 0 and

Range A0 respectively, according to the orthogonal decomposition

X - Ker A0® Range A0

- it follows that Q and Q commute with A(p). From this observation, it is

easily found that the reduced equation is

Q1A(p)e + Q1H(p, c + 0(p, E)) - 0 , (7.8)

with 0(p, e) characterized by

QoA(M)O(p, e) + Q0 H(j, e + 0(p, e)) - 0 (7.9)

On the other hand, as VJ - F, c is a critical point of the functional (7.7) if

and only if

(F(p, c + 0(p, e)) , h + D O(A, ).h) - 0 , Vh E Ker A0

But h and D ( e).h being in Ker A0 and Range A0 respectively, this reads

(Q1F(, e + 0(p, e)) ,h) - 0 , Vh E Ker A0

(QoF(p, e + O(A, e) ,D 0(p, c).h) - 0 , Vh E Ker A0

From (7.4) and (7.9), the second equation is automatically satisfied. The

* above system thus reduces to the first equation alone, which is nothing but

Ql F(p, c + 0(p, e)) - 0. From (7.4), this equation coincides with (7.8) and

* the proof is complete. 03

Remark 2: Since D xH(, 0) - 0 from (7.4) and A(A) D xF(M, 0), differentiating

(7.9) yields

(2) Of course, this statement is only local.

%.

'¢ ",,,"%
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Q: QoA(j)D f(, 0) - 0

Hence D f(j,0) - 0 since Q0A(p) E Isom (Range A0). Note however that this

result heavily relies on the assumption that Ker A0 is stable under A(M):

otherwise, (7.9) is not valid. 0

To make Lemma 7.1 available in a general framework, note that the varia-

tional character of the equation F(p, x) - 0 is not affected by changing

F(p, x) into

F(, x) - M (A)F(p, M(,u)x) , (7.10)

. where M(ju) is any parametrized family of invertible operators. Indeed,

F(p, x) - VJ(p, x) where

J(p, x) - J(A, M(W)x) (7.11)
'F

Changing F into F preserves the trivial branch and, in this process, A(,U) and

H(A, x) are transformed into

A(j) - M (j)A(p)M(p) (7.12)

and

H(A, x) - M (,)H(A,M(j4)x) , (7.13)

respectively. The question that now arises is to find conditions on A(k)

ensuring that a parametrized family M(A) as above can be found so that A(M) as

in (7.12) leaves Ker A(0) invariant. As shown in Lemma 7.2 below, a very sim-

ple sufficient condition is that A(A) be analytic.

Lemma 7.2: Suppose that A(/) is an analytic family of selfadjoint operators

with A0 - A(0) Fredholm (with index zero) and A(,) invertible for 114 o 0

small enough. Then, there is an orthonormal basis of Ker A0 and an analytic

family M(ji) of invertible operators of 1(X) such that A(p) - M (,)A(p)M(M) has

.9V



%

-40-

the block diagonal representation

( 0 -](7.14)

with B(p) e t(Range A0) analytic and invertible and D ) t(Ker A0 ) of the

form

" D(j) -diag (ai 1  n (7.15)

in the given basis of Ker A0, where xi, ... K n (n dim Ker A0) are the par-

tial multiplicities of u - 0 in A(A) and a. - + 1 1 < j < n.

Note: This statement is different from that of Section 4 guaranteeing

existence of a local Smith form.

Proof: Since A0 is Fredholm and selfadjoint, 0 is an isolated eigenvalue of A0

with finite multiplicity n - dim Ker A As A(A) is analytic, it follows from
0'

Kato [11, pp. 122 and 386] that there is an analytic family U(A) E X(X) of

A unitary operators with U(0) - IX such that

A

S.- A(A) - U (A)A(p)U(A) (7.16)

has the representation

;i "; '  A (A ) -A ( #
.B

AA
relative to the decomposition X - Ker A0 Range A In addition, D(M) has the

form

A

D(M) - diag(l(A) . .. n(/')) (7.17)

in some orthonormal basis of Ker A0, with A.(.) being analytic, 1 < j < n.

Although Kato's results are established in the case of a complex Hilbert

space, the construction of U(A) as a solution to a differential equation can

A

% equally be carried out in the real case. Observe that D(0) - 0 since

Ne'

W-'r%



-,41 -

A(0) - A0 from U(O) - I Since A(A) is invertible for IMI 70 small enough,

it follow from Remark 1 of Section 4 that the partial and algebraic multipli-

cities of M - 0 in A(A) are well defined. From Corollary 2.1, they are the
^ ^ A

same in A(M) and A(p) and, further, in A(p) and D(M). To prove the latter

, statement, note first that A(O) and D(O) - 0 have null-space Ker AO . Let then

e(A) be a root function of A(M) of order j. Setting e(p) = e0 (m) + e1 (0)

according to X = Ker A 0 (D Range AO, one has e(O) = eo(0) o 0 and eo(14) is

obviously a root function of D(p) whose order is no less than j. Conversely,

any root function e0 (A) of D(p) is also a root function of A(A) with the same

order since A(p)e 0 (A) - D(A)e 0 (p). Equality of the partial multiplicities is

, ..] an easy consequence of these observations, upon considering root functions

corresponding to elements of canonical sets of generalized Jordan chains.

. . After rearranging the A.'s in (7.15), which does not affect previous

results provided that the vectors of the orthonormal basis of Ker A0 are rear-

ranged accordingly, one then has

PC

X - p Jdj(p) , 1 < j < n

with d.(.) analytic and d.(0) # 0 (see Section 4 where a similar argument is

used). Thus, we may write

K.

.#' (p ) - I
Swhere A(p) - diag (611(p)..... 6ni(p)) in the same basis of Ker A0, one

finds the desired decomposition (7.14) with D(p) as in (7.15) by taking

t
N . J-o I

%
-t .- W- ZOf i
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Assume then that A(M) - D F(A, 0) is analytic with A(p) invertible for

II o 0 small enough. Choosing M(A) as in Lemma 7.2 and with F given by

(7.10), bifurcation in the equation F - 0 occur if and only if it occurs in

the equation F - 0. None of the assumptions on F is affected by so changing F

into F: in particular, this does not affect the partial multiplicities.

Doing so reduces the problem to the case when Ker A(0) is stable under A(y)

for IpI small enough. From Lemma 7.1, bifurcation in F - 0 amounts to bifur-

cation in f - 0, where f(p, f) is the gradient of the functional

e E Ker A(O) - J(p, c + 0(p, ~))

with 6 as in Lemma 7.1. Now, recall that not only 0(p, 0) n 0 but also

D 0(., 0) - 0 (see Remark 2). Using this along with F(p, 0) - 0 (i.e.

D J(p, 0) - 0) a straightforward calculation shows that f(p, 0) - 0 and
x

D f(p, 0) - A(M)e , V E E Ker A(0)

But, since the above holds upon changing F into F, A(L) must be understood as

being A(M) in (7.14). Thus, for e E Ker A(0), A(A)e - D()e (after identify-

ing e with its decomposition in the suitable basis of Ker A(O)). From the

form of D(A) given by (7.15), it is immediate to check whether some change of

the Morse index occurs as p crosses 0. If so, Theorem 7.1 guarantees bifurca-

'J1 tion. Note that D(p) is invertible for A o 0 as is required by Theorem 7.1.

It is worth expanding a little on the condition ensuring that the Morse

w.. index of D(p) changes as A crosses zero. This depends on both the partial0..

multiplicities x. and the u.'s. Clearly, those terms involving an even K. do

not contribute to any modification of the Morse index. On the contrary, cp A

does change sign as p crosses zero if K is odd, but the Morse index will not

or.- A

"S6
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change if an equal number of eigenvalues of D(p) cross the origin in either

direction, namely if a. - 0. This condition is both necessary and suffi-

K odd 
j

cient for the Morse index to be unchanged. The criterion for bifurcation is

then that a. o 0 or, equivalently
•.odd 

j

(1 + (-I) J)a. - 0 (7.18)

j-!

, Remark 3: A simple examination of the proof of Lemma 7.2 reveals that the

A .()'s in (7.17) are the eigenvalues of A - A(0), and that a. P j is the
p .3 0

first nonzero term in the Taylor series of Aj(&) about the origin, apart from

. the multiplicative constant Idj(0)1. In other words, a. is the sign of the

first nonzero derivative of A.(-) at the origin, and condition (7.18) amountsi.- 3

to saying that the eigenvalues of A(p) cross the origin in one direction more

-- than in the other as p crosses zero. 0

For convenience, the family (a.l.... .a) obtained in Lemma 7.2 will be

- called a sign characteristic of A(y) (at p - 0). Sign characteristics are

3 unique to within permutations of (1, .... n) compatible with x > ... 
>  "

1- - n

Of course, condition (7.18) is independent of the representative for the sign

characteristic. We shall summarize the results obtained above in the follow-

ing theorem.

Theorem 7.2: let J RxX - R be a2 functional and set F(p, x) - VJ(A, x).

Suppose that F(p, 0) - 0 and A(M) - D F(p, 0) is analytic and invertible for

p 0 near 0, with A(O) Fredholm (with index zero). Finally, suppose that the

J, condition

nK
S(1 + (-1) J)a. 0

j-l

WV
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holds, where x > ... > K are the partial multiplicities of A - 0 in A(p)

(n - dim Ker A(0) > 1) and (a1, ... I ) is any sign characteristic of A(p)n% - n A-

at - 0. Then, bifurcation in F - 0 occurs at (0, 0).

In practice, Theorem 7.2 has the inconvenience of requiring A(A) to be

analytic. Even if this should not be a severe restriction in many applica-

tions, it would be desirable to have a result that, at least, does not require

checking analyticity of A(M). It turns out that any problem of the form con-

sidered here involving an operator A(p) - D xF(A, 0) which is smooth - or even

smooth enough - with A(0) being Fredholm and such that the partial multiplici-

ties KI > ".. > x ae well defined, is equivalent to a problem in which A(A)
1- n

is a polynomial (hence analytic). This result, that shows how Theorem 7.2 can

be applied in the nonanalytic case as well, is now established.

Exposition 7.1: Suppose that A(p) is a smooth (or smooth enough) family of

selfadjoint operators with A 0 - A(0) Fredholm (with index zero) and set

dim Ker A n > 1. Suppose that the partial multiplicities Ki *.' > t2 of
0 1- > 2 -

- 0 in A(p) are well defined. For every integer k > KI, set

- k j
Ak()- A (0)

j-0 !

Then, there is a smooth (or smooth enough) family Tk(u) E X(X) of operators

S invertible for IjI small enough such that

Ak(p) - Tk(p)A(A)Tk(A)

. Proof: To begin with, observe that the partial multiplicities ni, .... K are
n

the same for A(p) and Ak(p). This follows from finiteness of KI involving

only the derivatives AM(0), 0 < j < r.1 , which, also, are all that is needed

to characterize all possible generalized Jordan chains. Write

%. - "
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k+ 1'A A) - Ak (A) + kiR (A)

wich R(p) smooth. Recall that Ak(A) is invertible for JI > 0 small enough

E(cf. Remark 1 of Section 4). Hence, for JA[ > 0 small enough

A(p) - Ak(p)(I + Ck(p)) , (7.19)

where

k+l -l

Ck(m) - k Ak (p)R(p)

Since Ak() is selfadjoint and A- Ak(0) , one may use Lemma 7.2 with Ak(p)

and write

Ak() -

with Mk(A) being analytic in A and invertible for JI small enough (including

A - 0) and with

A -k(0k()J

where

D k(M) - diag(a 1A
1  n 1n

and Bk(A) E X(Range A 0 ) (recall that A0 - Ak(O) as well) is analytic in p and

invertible for JI small enough. These properties immediately show that
k+l.-l,
A k (), and hence Ck(p) above, is smooth and vanishes at the origin since

" k >

Since both Ak(A) and A(A) are selfadjoint, it follows from (7.19) that

A~)-Ak(A)(I + Ck(A)) -(I + k (A

and hence

Ak(A)Ck(A) - Ck(A)Ak(A)

V lowW ae, ~ ~ 'A
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Therefore, more generally, for every integer p > 0

k A )(C ( ) (Ck( Ak(I) (7.20)

As Ck(0) - 0, the operator

(I + Ck(A)) e t(X)

is well defined for II small enough through the series

(I + k A (Ck(k) (7.21)

where the real coefficients a are as in the Taylor series of (I + x) at

pI
x -0.

Combining (7.20) and (7.21), one finds

A2 Ak(A)(I + -k() [(I + CGk(A)) l*Ak(A)

This shows that (7.19) may be rewritten as

A(M) - [(I + Ck(p)) ] A )(I + Ck(m))

The desired result follows by taking

Tk(m) - (I + Ck(A))-

Smoothness of Tk(A) is ensured by smoothness of (I + Ck()) , the latter

- resulting from smoothness of Ck(M) and normal convergence of the series in

*.. (7.21) (for I & small enough). 0

The way Proposition 7.1 can be combined with Theorem 7.2 to prove bifur-

cation in the equation F - 0 when F(p, 0) - 0 and A(p) - DxF(M , 0) verifies

the assumptions of Proposition 7.2 is clear: with Ak-(A) and Tk(A) as above,

set

Fk(0, x) -Tk ()F(A, Tk( )x)

et I
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" then, Fk( ,, 0) 0 and DxFk( , 0) = Ak(p) is analytic. Moreover, Fk(k, x) is

the gradient of the functional

Jk(a, x) - J(A, Tk()x)

As Tk(M) is invertible for IMI small enough , bifurcation in F - 0 occurs if

and only if it occurs in Fk = 0, and bifurcation in Fk = 0 may be examined

. . through Theorem 7.2.

p n." Rn
Remark 4: If X - Rn, the condition (1 - (-1) J)a. # 0 where (ai C. )

is a sign characteristic of Ak() at p - 0 is equivalent to saying that the

Morse index of Ak(p) changes as ju crosses zero. This follows from the argu-

* ment that the a.s J's represent (essentially) the dominant term of the eigen-

values Ajk(A) of Ak(.) (see Remark 3). From Proposition 7.1, it is easily

inferred that, in addition, this condition is equivalent to saying that the

Morse index of A(,u) itself changes as p crosses zero. Indeed, A(A) and Ak(i)

are congruent through the invertible operator Tk(p), which can only happen if

* A(p) an Ak(j) have the same number of positive and negative eigenvalues (as is

p well known) and hence the same Morse index. Thus, the combination of Theorem

7.2 and Proposition 7.1 yields again a particular case of Theorem 7.1 (in

which existence of partial multiplicities is not required). Also, the above

n K.
arguments easily yield that the condition (1 - (-1) 3 )o. # 0 is independent

' j-0

not only of the sign characteristic of Ak(j) at p - 0 but also of the Taylor

polynomial Ak(I) provided that k > %i. Although it is natural to conjecture

that the same result is true if X is an infinite dimensional Hilbert space, we

have not found a completely general proof of this as yet. 0

Many bifurcation theorems can be derived from the combination of Theorem

7.2 and Proposition 7.1 by formulating assumptions that guarantee that the

N%%



partial multiplicities are well defined and that condition (7.18) holds. For

instance, assuming that the partial multiplicities are well defined and that

the algebraic multiplicity -y - KI + ".. + n is odd yields bifurcation.

Indeed, 7 is odd if and only if an odd number of K.'s are odd and, if so, con-

dition (7.18) is necessarily satisfied. This result is nothing but Theorem

5.1 for a variational problem. Another (new) bifurcation theorem whose

hypotheses should be especially easy to check in practice and that can be

obtained according to this procedure is as follows.

Theorem 7.3: Let J RxX - R be a. functional and set F(g, x) = VJ(p, x).

Suppose that F(p, 0) - 0 and A(p) - D F(p, 0) is smooth (or, more generally,
x -

1 3
e.g. if J is ). Suppose that A(0) is Fredholm (with index zero) and -9

that A (0) is positive definite on Ker A(0) A (0). Then, bifurcation in F = 0

occurs at (0, 0).

Note: Changing F into -F shows that the result is valid upon replacing "posi-

tive definite" by "negative definite". For another generalization, see Remark

5 later.

Proof: First, we shall show that no generalized Jordan chain of A(p) has

length >1. This ensures that K. - 1, 1 < j < n (n - dim Ker A(O)). Other-

wise, one can find e0 C Ker A(0) - (0) and eI E X such that

A(O)e I + A (0)e = 0
1 0

Hence

0t

(A(0)eI, e0 ) + (A (0)e0 , e0 ) - 0

But (A(0)el, e0 ) - (el, A(0)e0 ) - 0 from e0 E Ker A(0). Thus, one finds

(A (0)e0 , e0 ) - 0, in contradiction with e0 , 0. Replacing A(p) by, say,

M N
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A (j,) = A(O) + jA (0)

does not affect the hypotheses on A(p), nor the partial multiplicities. As

explained before, Proposition 7.1 allows one to reduce the problem to the case

when A(p) is analytic. The next step consists in proving that the sign

" characteristic of A(p) at p - 0 is (1, 1 ..... 1). If so. condition 7.IS

* is trivially fulfilled and bifurcation follows from Theorem 7.2.

In the assumption that A(A) is analytic, let (A (p)) denote the fai .of

eigenvalues of A(p) and consider an orthonormal family (x.(p)) of associated

eigenvectors. The A.'s are analytic in p and it is a standard result that the
-. " 3

x.'s can be taken analytic, too. Differentiating the identity

A(p)x.(p) = ,U()xj(U)

a: .,J- -vields

r A (O)x (0) + A(O)x.(0) = A.(O)x.(0) + A(0)x.(0)

From I xj 1 - 1, one finds

(x.(O), x.(O)) 0 0

Hence

A. (0) (A (O)x (0), x (0)) + (A(O)x (0), x (0))

But (A(0)x (0), x (0)) - (x.(0), A(O)x (0)) = 0 from x. (0) E Ker A(O) and ,e

are left with

A '(0)= (A (0)x.(0), x.(0)) > 0

Since a. is the sign of the first nonzero derivative of A . at the origin (cf.

Remark 3), one has (al. - ( 1), as desired. [
1 n

Remark 5: More generally, the proof of Theorem 7.3 can be repeated to show

that bifurcation is guaranteed if the nondegeneracy condition (5.1) (ensuring

.
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S . . X - 1), namely
1 n

(A (0)) (Range A(O)) n Ker A(O) - 10)

is satisfied and if the (nondegenerate) operator PA (O)P E X(Ker A(O)) where P

denotes the orthogonal projection onto Ker A(O), has nonzero Morse index.".."Z

-This is of course the case if n is odd, a particular case that remains valid

when F is not a gradient as was seen in Section 5. 0

Remark 6: Theorem 7.3 is a very particular case among the bifurcation theorems

that can be deduced through the combination of Theorem 7.2 and Proposition

7.1. Still, it trivially contains the example when

A(A) - (A0 + p)I - LI0

and L is selfadjoint, A is an isolated eigenvalue of L with finite multipli-
0

city. Apparently, this was the most general situation to be found in the

.'" literature (e.g. Section 4.11 in Chow and Hale [31). 0

It should not be inferred from Theorem 7.3 that the partial multiplici-

ties of p - 0 in A(p) and the sign characteristic(s) can always be determined

from the restriction of the quadratic form (A(M)x, x) for x E Ker AO). Con-
, R4

A, sider for instance the following counter example: Let X - R and

a 3+ P2  0 - 4 + 0

,"3 2 4% . 0 o - o -0
A(p) - 1 3 2 5

2 4 5
1+p -p U 0 p +1 0

0 - -p 0 U - i

3Then, A(A) has eigenvalues p (double) with eigenvectors (1, 0, -A, 0) and

~-- (0, 1, 0, - ), I (simple) with eigenvector (p, 0, 1, 0) and -1 (simple) with

eigenvector (0, u, 0, 1). Obviously, A(pa) verifies the conditions required in

p.:

p.-".

pe.
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Theorem 7.2 since n - dim Ker A(O) - 2, KI - K 2 - 3 and a - a - 1. Now,

with x - (xI, x2 , x3, x4 ), Ker A(O) consists of those vectors of the form

(Xl, x2 , 0, 0). For such a choice of x, one has

2 2

(A(p)x, x) - [(U + I)x 1 + (A - 1)x2]

This quadratic form is represented by the matrix

+2 0 1

with eigenvalues p2  + i)/(i + P2 yielding the wrong values K I X 2 - 2.
' i -l ia -- 1.

1 '2

As a conclusion, we shall now show that the condition

n X.

- (1- (-) )a. 0 in Theorem 7.2 is sharp. Take X- R2  and, with
... j-1

x - (xj, x2)

F(pu, x) - (Mx + X23 + 3x 2xx3 + 3x 2
1 2 1 2' -X + 1l 12.'

pThen, F - VJ with

1 2 2 3 3p ~J(p, x) - p(x I - x2 ) + XlX2 + XlX2

Clearly,

A(p) A 0]

so that Ker A(0) - R 2, 1 " ,2  1 a1 - 1 and a2  -. Thus, here,

a 1+2 - 0 and, actually, no bifurcation occurs. Indeed, F(p, x) - 0

requires F(p, x)-(x X ) - 0, namely xl + 6x 2x2 + x 2 - 0, forcing

x - x 0.
1 20

, The results of this section can be extended to the case when bifurcation

is studied from an arbitrary smooth curve (p, x(p)) since changing x into

,S.
1.,
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x + x(p) does not affect the variational character of the problem and allows

for a reduction to the case when bifurcation is studied from the trivial

branch.

I.% '
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